Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models.

نویسندگان

  • Thiruvengadam Arumugam
  • Vijaya Ramachandran
  • Craig D Logsdon
چکیده

BACKGROUND We previously found that S100P, a member of the S100 protein family, is expressed in more than 90% of pancreatic tumors and is associated with tumor growth and invasion. In the current study, we investigated the ability of the antiallergy drug, cromolyn, to block S100P function. METHODS Interactions between cromolyn and S100P were investigated using a drug affinity column and by examining cromolyn's effects on coimmunoprecipitation of S100P and receptor for advanced glycation end-products (RAGE). The effects of cromolyn on cell growth, invasion, and nuclear factor-kappaB (NFkappaB) activity of pancreatic cancer cells with (BxPC-3 and MPanc-96) and without (Panc-1) endogenous S100P were investigated by cell proliferation assay, by cell invasion assay, and by luciferase reporter gene assay, respectively. The effects of cromolyn on tumor growth in vivo were investigated in three orthotopic models (n = 20 mice per model) by administration of cromolyn (5 mg/kg body weight, daily) with and without gemcitabine (125 mg/kg body weight, biweekly), the drug currently used to treat pancreatic cancer. Tumor growth was assayed by reporter gene expression. All statistical tests were two-sided. RESULTS S100P was retained on a cromolyn affinity column. Cromolyn blocked the coimmunoprecipitation of S100P and RAGE. In vitro, cromolyn (100 microM) inhibited S100P-stimulated Panc-1 cell proliferation (S100P, mean = 0.93 U, versus S100P + cromolyn, mean = 0.56 U, difference = 0.37 U; 95% confidence interval [CI] = 0.24 to 0.49 U; P = .001, n = 3), invasion (S100P, mean = 58.0%, versus S100P + cromolyn, mean = 9.4%, difference = 48.6%; 95% CI = 38.8% to 58.8%; P<.001, n = 3), and NFkappaB activity (S100P, mean = 14,460, versus S100P + cromolyn, mean = 7360 photons/s, difference = 7100 photons/s; 95% CI = 3689 to 10 510 photons/s; P = .005, n = 3). In vivo, cromolyn inhibited tumor growth in mice bearing tumor with endogenous S100P (BxPC-3: control, mean = 1.6 x 10(9) photons/s, versus cromolyn, mean = 4.4 x 10(8) photons/s, difference = 1.2 x 10(9) photons/s; 95% CI = 6.2 x 10(8) to 1.6 x 10(9) photons/s; P<.001, n = 5; MPanc-96: control, mean = 1.1 x 10(10) photons/s, versus cromolyn, mean = 4.8 x 10(9) photons/s, difference = 6.2 x 10(9) photons/s; 95% CI = 1.9 x 10(9) to 1.0 x 10(10) photons/s; P = .009, n = 5) and increased the effectiveness of gemcitabine (BxPC-3: gemcitabine, mean = 9.2 x 10(8) photons/s, versus combination, mean = 1.8 x 10(8) photons/s, difference = 7.4 x 10(8) photons/s; 95% CI = 4.5 x 10(8) to 1.0 x 10(9) photons/s; P<.001; MPanc-96: gemcitabine, mean = 4.1 x 10(9) photons/s, versus combination, mean = 2.0 x 10(9) photons/s, difference = 2.1 x 10(9) photons/s; 95% CI = 4.4 x 10(8) to 3.8 x 10(9) photons/s; P<.001). However, cromolyn had no effect on growth of tumors lacking S100P (Panc-1). CONCLUSION Cromolyn binds S100P, prevents activation of RAGE, inhibits tumor growth, and increases the effectiveness of gemcitabine in experimental models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S100P promotes pancreatic cancer growth, survival, and invasion.

PURPOSE In the current study, we examined the functional significance and mechanism of action of S100P in pancreatic cancer cells. EXPERIMENTAL DESIGN S100P levels were increased in Panc-1 cells, which do not express S100P, by transfection with an S100P cDNA and S100P levels were reduced in BxPC3 cells, which express high levels of S100P, by small interfering RNA gene silencing. Effects of th...

متن کامل

S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis.

PURPOSE The receptor for advanced glycation end products (RAGE) contributes to multiple pathologies, including diabetes, arthritis, neurodegenerative diseases, and cancer. Despite the obvious need, no RAGE inhibitors are in common clinical use. Therefore, we developed a novel small RAGE antagonist peptide (RAP) that blocks activation by multiple ligands. EXPERIMENTAL DESIGN RAGE and its ligan...

متن کامل

Cancer Therapy: Preclinical S100P-Derived RAGE Antagonistic Peptide Reduces Tumor Growth and Metastasis

Purpose: The receptor for advanced glycation end products (RAGE) contributes tomultiple pathologies, including diabetes, arthritis, neurodegenerative diseases, and cancer. Despite the obvious need, no RAGE inhibitors are in common clinical use. Therefore, we developed a novel small RAGE antagonist peptide (RAP) that blocks activation by multiple ligands. Experimental Design: RAGE and its ligand...

متن کامل

S100p-derived Rage Antagonistic Peptide (rap) Reduces Tumor Growth and Metastasis

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Purpose: The receptor for advanced glycation end products (RAGE) contributes to multiple pathologies, including diabetes, arthritis, neurodegenerative diseases, and cancer. Despite the obvious need, no RAGE inhibitors are in common clinical use. Therefore, we developed a novel small RA...

متن کامل

Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma

Elevated expression of S100P has been detected in several tumor types and suggested to be responsible for tumor metastasis and invasion, but the upstream regulatory mechanisms promoting S100P overexpression are largely unknown. Here, we report that SOX9 was predicted and verified as a transcription factor of S100P. SOX9 and S100P were both overexpressed in colon cancer. SOX9 bound to and activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 98 24  شماره 

صفحات  -

تاریخ انتشار 2006